资源类型

期刊论文 200

会议视频 7

年份

2023 22

2022 25

2021 25

2020 13

2019 11

2018 9

2017 9

2016 9

2015 9

2014 2

2013 5

2012 9

2011 9

2010 12

2009 13

2008 6

2007 3

2006 4

2005 1

2004 2

展开 ︾

关键词

斜拉桥 9

悬索桥 5

一阶分析法 2

主缆 2

南京长江第四大桥 2

大规格 2

安全系数 2

数据驱动方法 2

智能制造 2

机器学习 2

环境 2

苏通大桥斜拉桥 2

10kV高压电力电缆 1

1860 MPa等级 1

1T/2H-MoS2 1

360°表征 1

4250 m 1

4D CAD 1

9 + 2结构 1

展开 ︾

检索范围:

排序: 展示方式:

State-of-the-art on theories and applications of cable-driven parallel robots

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0693-3

摘要: Cable-driven parallel robot (CDPR) is a type of high-performance robot that integrates cable-driven kinematic chains and parallel mechanism theory. It inherits the high dynamics and heavy load capacities of the parallel mechanism and significantly improves the workspace, cost and energy efficiency simultaneously. As a result, CDPRs have had irreplaceable roles in industrial and technological fields, such as astronomy, aerospace, logistics, simulators, and rehabilitation. CDPRs follow the cutting-edge trend of rigid–flexible fusion, reflect advanced lightweight design concepts, and have become a frontier topic in robotics research. This paper summarizes the kernel theories and developments of CDPRs, covering configuration design, cable-force distribution, workspace and stiffness, performance evaluation, optimization, and motion control. Kinematic modeling, workspace analysis, and cable-force solution are illustrated. Stiffness and dynamic modeling methods are discussed. To further promote the development, researchers should strengthen the investigation in configuration innovation, rapid calculation of workspace, performance evaluation, stiffness control, and rigid–flexible coupling dynamics. In addition, engineering problems such as cable materials, reliability design, and a unified control framework require attention.

关键词: cable-driven parallel robot     kinematics     optimization     dynamics     control    

Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0687-1

摘要: Masticatory robots are an effective in vitro performance testing device for dental material and mandibular prostheses. A cable-driven linear actuator (CDLA) capable of bidirectional motion is proposed in this study to design a masticatory robot that can achieve increasingly human-like chewing motion. The CDLA presents remarkable advantages, such as lightweight and high stiffness structure, in using cable amplification and pulley systems. This work also exploits the proposed CDLA and designs a masticatory robot called Southeast University masticatory robot (SMAR) to solve existing problems, such as bulky driving linkage and position change of the muscle’s origin. Stiffness analysis and performance experiment validate the CDLA’s efficiency, with its stiffness reaching 1379.6 N/mm (number of cable parts n = 4), which is 21.4 times the input wire stiffness. Accordingly, the CDLA’s force transmission efficiencies in two directions are 84.5% and 85.9%. Chewing experiments are carried out on the developed masticatory robot to verify whether the CDLA can help SMAR achieve a natural human-like chewing motion and sufficient chewing forces for potential applications in performance tests of dental materials or prostheses.

关键词: masticatory robot     cable-driven     linear actuator     parallel robot     stiffness analysis    

Linear quadratic optimal controller for cable-driven parallel robots

Saeed ABDOLSHAH,Erfan SHOJAEI BARJUEI

《机械工程前沿(英文)》 2015年 第10卷 第4期   页码 344-351 doi: 10.1007/s11465-015-0364-8

摘要:

In recent years, various cable-driven parallel robots have been investigated for their advantages, such as low structural weight, high acceleration, and large workspace, over serial and conventional parallel systems. However, the use of cables lowers the stiffness of these robots, which in turn may decrease motion accuracy. A linear quadratic (LQ) optimal controller can provide all the states of a system for the feedback, such as position and velocity. Thus, the application of such an optimal controller in cable-driven parallel robots can result in more efficient and accurate motion compared to the performance of classical controllers such as the proportional-integral-derivative controller. This paper presents an approach to apply the LQ optimal controller on cable-driven parallel robots. To employ the optimal control theory, the static and dynamic modeling of a 3-DOF planar cable-driven parallel robot (Feriba-3) is developed. The synthesis of the LQ optimal control is described, and the significant experimental results are presented and discussed.

关键词: accuracy     cable-driven parallel robot     linear quadratic optimal control    

Kinematic design of an anthropomimetic 7-DOF cable-driven robotic arm

Guilin YANG, Shabbir Kurbanhusen MUSTAFA, Song Huat YEO, Wei LIN, Wen Bin LIM

《机械工程前沿(英文)》 2011年 第6卷 第1期   页码 45-60 doi: 10.1007/s11465-011-0205-3

摘要:

In this paper, an anthropomimetic design of a 7-DOF dexterous robotic arm is proposed. Similar to the human arm, the arm consists of three sequentially connected modules, i.e., a 3-DOF shoulder module, a 1-DOF elbow module, and a 3-DOF wrist module. All three arm modules are also driven by cables in order to mimic the driving scheme and functionality of the human muscles. This paper addresses three critical design analysis issues, i.e., the displacement analysis, the tension-closure analysis, and the workspace analysis. A closed-form solution approach is presented for the forward displacement analysis, while the inverse displacement solution is obtained through an efficient optimization algorithm, in which both task-decomposition and dimension-reduction techniques are employed. An effective tension-closure analysis algorithm is also formulated based on the theory of convex analysis. The orientation workspace for the 3-DOF shoulder and wrist modules are then analyzed using a new equi-volumetric partition scheme based on the intuitive Tilt-and-Torsion angle parameterization. An optimization approach is then investigated for the kinematic design of the three joint modules, in which the design objective is to maximize the matched workspace of the robotic arm joints with that of the human arm joints. A research prototype of the 7-DOF cable-driven robotic arm has also been developed in order to demonstrate the anthropomimetic design concept. With a lightweight structure of 1 kg, the cable-driven robotic arm can carry a payload of 5 kg and has motion repeatability of±2.5mm.

关键词: anthropomimetic design     robotic arm     cable-driven mechanism     kinematic analysis     design optimization    

A modular cable-driven humanoid arm with anti-parallelogram mechanisms and Bowden cables

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0722-2

摘要: This paper proposes a novel modular cable-driven humanoid arm with anti-parallelogram mechanisms (APMs) and Bowden cables. The lightweight arm realizes the advantage of joint independence and the rational layout of the driving units on the base. First, this paper analyzes the kinematic performance of the APM and uses the rolling motion between two ellipses to approximate a pure-circular-rolling motion. Then, a novel type of one-degree-of-freedom (1-DOF) elbow joint is proposed based on this principle, which is also applied to design the 3-DOF wrist and shoulder joints. Next, Bowden cables are used to connect the joints and their driving units to obtain a modular cable-driven arm with excellent joint independence. After that, both the forward and inverse kinematics of the entire arm are analyzed. Last, a humanoid arm prototype was developed, and the assembly velocity, joint motion performance, joint stiffness, load carrying, typical humanoid arm movements, and repeatability were tested to verify the arm performance.

关键词: modular robotic arm     anti-parallelogram mechanism     Bowden cable     humanoid arm     lightweight joint design    

Comprehensive kinetostatic modeling and morphology characterization of cable-driven continuum robots

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0756-0

摘要: In-situ maintenance is of great significance for improving the efficiency and ensuring the safety of aero-engines. The cable-driven continuum robot (CDCR) with twin-pivot compliant mechanisms, which is enabled with flexible deformation capability and confined space accessibility, has emerged as a novel tool that aims to promote the development of intelligence and efficiency for in-situ aero-engine maintenance. The high-fidelity model that describes the kinematic and morphology of CDCR lays the foundation for the accurate operation and control for in-situ maintenance. However, this model was not well addressed in previous literature. In this study, a general kinetostatic modeling and morphology characterization methodology that comprehensively contains the effects of cable-hole friction, gravity, and payloads is proposed for the CDCR with twin-pivot compliant mechanisms. First, a novel cable-hole friction model with the variable friction coefficient and adaptive friction direction criterion is proposed through structure optimization and kinematic parameter analysis. Second, the cable-hole friction, all-component gravities, deflection-induced center-of-gravity shift of compliant joints, and payloads are all considered to deduce a comprehensive kinetostatic model enabled with the capacity of accurate morphology characterization for CDCR. Finally, a compact continuum robot system is integrated to experimentally validate the proposed kinetostatic model and the concept of in-situ aero-engine maintenance. Results indicate that the proposed model precisely predicts the morphology of CDCR and outperforms conventional models. The compact continuum robot system could be considered a novel solution to perform in-situ maintenance tasks of aero-engines in an invasive manner.

关键词: kinetostatic modeling     morphology characterization     variable friction     continuum robots     in-situ maintenance    

Design and modeling of continuum robot based on virtual-center of motion mechanism

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0739-6

摘要: Continuum robot has attracted extensive attention since its emergence. It has multi-degree of freedom and high compliance, which give it significant advantages when traveling and operating in narrow spaces. The flexural virtual-center of motion (VCM) mechanism can be machined integrally, and this way eliminates the assembly between joints. Thus, it is well suited for use as a continuum robot joint. Therefore, a design method for continuum robots based on the VCM mechanism is proposed in this study. First, a novel VCM mechanism is formed using a double leaf-type isosceles-trapezoidal flexural pivot (D-LITFP), which is composed of a series of superimposed LITFPs, to enlarge its stroke. Then, the pseudo-rigid body (PRB) model of the leaf is extended to the VCM mechanism, and the stiffness and stroke of the D-LITFP are modeled. Second, the VCM mechanism is combined to form a flexural joint suitable for the continuum robot. Finally, experiments and simulations are used to validate the accuracy and validity of the PRB model by analyzing the performance (stiffness and stroke) of the VCM mechanism. Furthermore, the motion performance of the designed continuum robot is evaluated. Results show that the maximum stroke of the VCM mechanism is approximately 14.2°, the axial compressive strength is approximately 1915 N/mm, and the repeatable positioning accuracies of the continuum robot is approximately ±1.47° (bending angle) and ±2.46° (bending direction).

关键词: VCM mechanism     continuum robot     flexural joint     pseudo-rigid body model     cable-driven    

可实现跖屈—背屈双向运动辅助的绳驱动踝关节外骨骼 Research

王田苗1,裴轩1,侯涛刚1,2,樊瑜波3,5,杨轩1,Hugh M. HERR4,杨兴帮4

《信息与电子工程前沿(英文)》 2020年 第21卷 第5期   页码 723-739 doi: 10.1631/FITEE.1900455

摘要: 下肢外骨骼辅助机器人广泛应用于运动辅助或康复训练。因绳驱动外骨骼具有良好人体顺应性且更加轻便,研究人员研发出一系列绳驱动样机辅助踝关节运动,但其中大多数只能辅助单向运动。本文提出一种可穿戴绳驱动踝关节外骨骼机器人,该外骨骼机器人使用一对单电机分别实现两侧踝关节跖屈—背屈双向运动辅助。该外骨骼主要重量(即电机、供能单元和控制单元)置于人体近端(即腰部)附近,以减少作用在穿戴者下肢的附加转动惯量。设计了基于齿轮—滑轮组件的绳索力传输系统,有效地将动力从电机端传递至末端执行器;设计了动力输出单元中的自张紧装置,用于实现穿戴者行走过程中绳索的张紧;设计了基于足底压力传感器和惯性测量单元(IMU)的步态检测系统,可有效识别步态周期和步行状态。为验证外骨骼动力输出性能,进行力矩跟踪实验。在受试者佩戴该外骨骼并提供主动辅助力情况下,比目鱼肌活动与未佩戴外骨骼状态相比降低5.2%,从而验证该外骨骼的力辅助作用。本文研究表明,该轻型绳驱动外骨骼机器人在人体运动增强或康复训练中具有潜在应用前景。

关键词: 踝关节外骨骼;跖屈—背屈双向辅助;仿生步态力矩;绳驱动;步态探测    

Finite element modeling of cable sliding and its effect on dynamic response of cable-supported truss

Yujie YU, Zhihua CHEN, Renzhang YAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1227-1242 doi: 10.1007/s11709-019-0551-5

摘要: The cable system of cable-supported structures usually bears high tension forces, and clip joints may fail to resist cable sliding in cases of earthquake excitations or sudden cable breaks. A analytical method that considers the dynamic cable sliding effect is proposed in this paper. Cable sliding behaviors and the resultant dynamic responses are solved by combining the vector form intrinsic finite element framework with cable force redistribution calculations that consider joint frictions. The cable sliding effect and the frictional tension loss are solved with the original length method that uses cable length and the original length relations. Then, the balanced tension distributions are calculated after frictional sliding. The proposed analytical method is achieved within MATLAB and applied to simulate the dynamic response of a cable-supported plane truss under seismic excitation and sudden cable break. During seismic excitations, the cable sliding behavior in the cable-supported truss have an averaging effect on the oscillation magnitudes, but it also magnifies the internal force response in the upper truss structure. The slidable cable joints can greatly reduce the ability of a cable system to resist sudden cable breaks, while strong friction resistances at the cable-strut joints can help retain internal forces.

关键词: sliding cable     explicit solution framework     original length method     seismic response     cable rupture    

Analytical dynamic solution of a flexible cable-suspended manipulator

Mahdi BAMDAD

《机械工程前沿(英文)》 2013年 第8卷 第4期   页码 350-359 doi: 10.1007/s11465-013-0271-9

摘要:

Cable-suspended manipulators are used in large scale applications with, heavy in weight and long in span cables. It seems impractical to maintain cable assumptions of smaller robots for large scale manipulators. The interactions among the cables, platforms and actuators can fully evaluate the coupled dynamic analysis. The structural flexibility of the cables becomes more pronounced in large manipulators. In this paper, an analytic solution is provided to solve cable vibration. Also, a closed form solution can be adopted to improve the dynamic response to flexibility. The output is provided by the optimal torque generation subject to the actuator limitations in a mechatronic sense. Finally, the performance of the proposed algorithm is examined through simulations.

关键词: parallel robot     flexible cable     suspended robot     dynamic    

Nonlinear analysis of cable structures using the dynamic relaxation method

Mohammad REZAIEE-PAJAND, Mohammad MOHAMMADI-KHATAMI

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 253-274 doi: 10.1007/s11709-020-0639-y

摘要: The analysis of cable structures is one of the most challenging problems for civil and mechanical engineers. Because they have highly nonlinear behavior, it is difficult to find solutions to these problems. Thus far, different assumptions and methods have been proposed to solve such structures. The dynamic relaxation method (DRM) is an explicit procedure for analyzing these types of structures. To utilize this scheme, investigators have suggested various stiffness matrices for a cable element. In this study, the efficiency and suitability of six well-known proposed matrices are assessed using the DRM. To achieve this goal, 16 numerical examples and two criteria, namely, the number of iterations and the analysis time, are employed. Based on a comprehensive comparison, the methods are ranked according to the two criteria. The numerical findings clearly reveal the best techniques. Moreover, a variety of benchmark problems are suggested by the authors for future studies of cable structures.

关键词: nonlinear analysis     cable structure     stiffness matrix     dynamic relaxation method    

Seismic design of high-rise towers for cable-stayed bridges under strong earthquakes

Yan XU, Shide HU

《结构与土木工程前沿(英文)》 2011年 第5卷 第4期   页码 451-457 doi: 10.1007/s11709-011-0127-5

摘要: This paper presents the first of a series of studies on the seismic design of high-rise towers for cable-stayed bridges under strong earthquakes. One practical cable-stayed bridge with a 730 m long main span and two high-rise towers over 200 m in height was selected for this study. The preliminary results show that compared with piers, the tower is more vulnerable to pulse-like earthquakes, and it may develop plasticity at certain locations. In addition, viscous dampers may not have the same effect during pulse-like earthquakes as they do under site-specific earthquakes. Hence, reoptimization of damper parameters or reconsideration of other energy dissipation devices will be needed if strong earthquakes are likely to occur.

关键词: high-rise tower     cable-stayed bridge     strong earthquake     seismic design    

Influence of damages on static behavior of single-layer cable net supported glass curtain wall: full-scale

Gang SHI, Yongjiu SHI, Yuanqing WANG, Yongzhi ZUO, Xiaohao SHI, Zaoyang GUO,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 383-395 doi: 10.1007/s11709-010-0074-6

摘要: The single-layer cable net supported glass curtain wall has been applied in many building structures all over the world. In service, it will inevitably be subject to various damages. To study the influence of such damages on the static behavior of the single-layer cable net supported glass curtain wall, a full-scale model with the outside outline size of 4.85 m × 4.85 m and 4 × 4 grids is designed and tested. Two kinds of damages that are the cable prestress loss and cable anchorage end failure are led into the structure model during the test, and their influence has been investigated. The stiffness contribution of glass panels to the single-layer cable net supported glass curtain wall structure with or without damages and its change have been tested and analyzed. The results show that the maximum change rate of nodal deflection is 13.78% for the damage of cable prestress loss, while the change rate of nodal deflection is between 7% and 22% for the damage of cable anchorage end failure. The influence degree of the damages depends on the ratio of the structure initial stress stiffness change caused by damages to the total stiffness of the structure. The stiffness contribution of glass panels increases with the load increase. Under the same loading condition, the stiffness contribution of glass panels to the damaged structure is greater than that to the intact structure. The stiffness contribution of glass panels reduces the effect of the damages on the structural displacement and the cable tension force, but the glass panel could break if its stiffness contribution is too large.

关键词: single-layer plane cable net supported glass curtain wall     damage     cable prestress loss     cable anchorage end failure     stiffness contribution of glass panels    

Function-oriented optimization design method for underactuated tendon-driven humanoid prosthetic hand

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0696-0

摘要: The loss of hand functions in upper limb amputees severely restricts their mobility in daily life. Wearing a humanoid prosthetic hand would be an effective way of restoring lost hand functions. In a prosthetic hand design, replicating the natural and dexterous grasping functions with a few actuators remains a big challenge. In this study, a function-oriented optimization design (FOD) method is proposed for the design of a tendon-driven humanoid prosthetic hand. An optimization function of different functional conditions of full-phalanx contact, total contact force, and force isotropy was constructed based on the kinetostatic model of a prosthetic finger for the evaluation of grasping performance. Using a genetic algorithm, the optimal geometric parameters of the prosthetic finger could be determined for specific functional requirements. Optimal results reveal that the structure of the prosthetic finger is significantly different when designed for different functional requirements and grasping target sizes. A prosthetic finger was fabricated and tested with grasping experiments. The mean absolute percentage error between the theoretical value and the experimental result is less than 10%, demonstrating that the kinetostatic model of the prosthetic finger is effective and makes the FOD method possible. This study suggests that the FOD method enables the systematic evaluation of grasping performance for prosthetic hands in the design stage, which could improve the design efficiency and help prosthetic hands meet the design requirements.

关键词: function-oriented     tendon driven     prosthetic hand     optimization     humanoid     underactuated    

Dynamic performance of submerged floating tunnel with different mooring styles subjected to anchor cable

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0932-7

摘要: Submerged floating tunnels (SFTs) are novel structures for transportation across long- and deep-strait regions. Owing to severe wave and current excitation as well as the effects of underwater structures and corrosion, the risk of local anchor cable failure is high, which can result in the progressive failure of the entire structure. In this study, experimental and numerical investigations are conducted to analyze the dynamic behavior of an SFT with different mooring styles under local cable failure. A custom-designed cable failure device and the birth-and-death element method are used to simulate cable failure (i.e., progressive failure) via experiments and numerical simulation, respectively. A physical-scale segmental model of an SFT with different mooring styles under anchor cable failure is developed in this study. A segmental and entire-length mathematical model is developed using the ANSYS program to perform the numerical simulation. The results of the segmental numerical and experimental models indicate good agreement. The dynamic response of an SFT with different mooring styles under cable failure is comprehensively investigated by investigating the effects of key parameters (wave period, buoyant weight ratio, and cable failure mechanism). Moreover, the progressive failure of the SFT under cable failure is investigated via a segment model test and a numerical simulation of its entire length. The present study can serve as a reference for the safer designs of the SFT mooring style.

关键词: dynamic behaviors     submerged floating tunnel     cable failure     mooring style     progressive failure    

标题 作者 时间 类型 操作

State-of-the-art on theories and applications of cable-driven parallel robots

期刊论文

Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion

期刊论文

Linear quadratic optimal controller for cable-driven parallel robots

Saeed ABDOLSHAH,Erfan SHOJAEI BARJUEI

期刊论文

Kinematic design of an anthropomimetic 7-DOF cable-driven robotic arm

Guilin YANG, Shabbir Kurbanhusen MUSTAFA, Song Huat YEO, Wei LIN, Wen Bin LIM

期刊论文

A modular cable-driven humanoid arm with anti-parallelogram mechanisms and Bowden cables

期刊论文

Comprehensive kinetostatic modeling and morphology characterization of cable-driven continuum robots

期刊论文

Design and modeling of continuum robot based on virtual-center of motion mechanism

期刊论文

可实现跖屈—背屈双向运动辅助的绳驱动踝关节外骨骼

王田苗1,裴轩1,侯涛刚1,2,樊瑜波3,5,杨轩1,Hugh M. HERR4,杨兴帮4

期刊论文

Finite element modeling of cable sliding and its effect on dynamic response of cable-supported truss

Yujie YU, Zhihua CHEN, Renzhang YAN

期刊论文

Analytical dynamic solution of a flexible cable-suspended manipulator

Mahdi BAMDAD

期刊论文

Nonlinear analysis of cable structures using the dynamic relaxation method

Mohammad REZAIEE-PAJAND, Mohammad MOHAMMADI-KHATAMI

期刊论文

Seismic design of high-rise towers for cable-stayed bridges under strong earthquakes

Yan XU, Shide HU

期刊论文

Influence of damages on static behavior of single-layer cable net supported glass curtain wall: full-scale

Gang SHI, Yongjiu SHI, Yuanqing WANG, Yongzhi ZUO, Xiaohao SHI, Zaoyang GUO,

期刊论文

Function-oriented optimization design method for underactuated tendon-driven humanoid prosthetic hand

期刊论文

Dynamic performance of submerged floating tunnel with different mooring styles subjected to anchor cable

期刊论文